top of page


[77] M. Ouadfel, M. de San Feliciano, C. Herrero, S. Merabia and L. Joly, "Molecular contributions to thermo-osmotic phenomena for an electrolyte at a charged surface", arXiv:2211.16355, submitted to J. Chem. Phys. 

[76] M. Gomez Virolia, Y. Guo, S. Merabia, P. Ben Abdallah and R. Messina, "Heat transfer in the extreme near-field regime between metallic bodies", Phys. Rev. B 107 (2023) 125414 

[75] Y. Guo, X.-P. Luo, Z. Zhang, S. Merabia, M. Nomura and S. Volz, "Basal-plane heat transport in graphite thin films", submitted to Phys. Rev. B

[74] O. Gutiérrez-Varela, J. Lombard, T. Biben, R. Santamaria and S. Merabia, "Wetting controlled boiling at the nanoscale",


[73] S Lafon, A Chennevière, F Restagno, S Merabia, L Joly, "Giant slip length at a supercooled liquid-solid interface", Phys. Rev. E 107 (2023) 025101

[72] R. Rabani, S. Merabia and A. Pishevar, "Conductive Heat Transfer through Nanoconfined Gas: From Continuum to Free-Molecular Regime", 

arXiv preprint arXiv:2108.06689 

[71] Y. Guo, C. Adessi, M. Cobian and S. Merabia, "Atomistic simulation of phonon heat transport across metallic vacuum nanogaps", Phys. Rev. B 106 (2022) 085403

[70] O. Gutiérrez, S. Merabia, R. Santamaria, "Size-dependent thermal transport at gold nanoparticles-water interfaces", J. Chem. Phys. 157 (2022) 084702

[69] C. Herrero, L. Joly, S. Merabia, "Ultra-high liquid-solid thermal resistance using nanostructured gold surfaces coated with graphene", Appl. Phys. Lett.

120 (2022) 171601 

[68] F Tabatabaei, S Merabia, B Gotsmann, M Prunnila, TA Niehaus, " Interplay of electron and phonon channels in the refrigeration through molecular junctions",  Nanoscale 14 (2022), 11003 

[67]  J Lombard, T Biben, S Merabia, "Electron-phonon effects on the photoacoustic response of gold core-silica shell nanoparticles: from the linear regime to nanocavitation", The Journal of Chemical Physics, 156 (2022) 084701

[66] C Herrero, M de San Feliciano, S Merabia, L Joly, "Fast and versatile thermo-osmotic flows with a pinch of salt",  Nanoscale, 12 (2022) 626

[65] R Rabani, MH Saidi, L Joly, S Merabia, A Rajabpour, "Enhanced local viscosity around colloidal nanoparticles probed by Equilibrium Molecular Dynamics Simulations", The Journal of Chemical Physics 155 (2021), 174701

[64]  H Oga, T Omori, C Herrero, S Merabia, L Joly, Y Yamaguchi, "Theoretical framework for the atomistic modeling of frequency-dependent liquid-solid friction", Phys. Rev. Res. 3 (2021), L032019

[63] J. Lombard, J. Lam, F. Detcheverry, T. Biben and S. Merabia, "Strong and fast rising pressure waves emitted by plasmonic vapor nanobubbles", Phys. Rev. Res. 03 (2021) 023023

[62] C Herrero, MDS Féliciano, S Merabia, L Joly, "A general model of thermo-osmosis in aqueous electrolytes: controlliing thermally induced nanoscale 

flows with a pinch of salt", submitted arXiv preprint arXiv:2012.11571

[61]  T Hupfeld, G Laurens, S Merabia, S Barcikowski, B Gökce, D Amans, "Dynamics of laser-induced cavitation bubbles at a solid-liquid interface in high viscosity and high capillary number regimes", Journal of Applied Physics 127 (2020), 044306

[60] C. Herrero, G. Tocci, S. Merabia, L. Joly, "Fast increase of thermal slip in supercooled water: the key role of dynamics", Nanoscale 12 (39), 20396-20403

[59] A. Alkurdi, C. Adessi, F. Tabatabaei, S. Li, K. Termentzidis, S. Merabia, "Thermal transport across nanoscale gaps: phonon transmission vs air conduction", Int. J. Heat Mass Transf. 158 (2020)119963

[58] A. Alkurdi, J. Lombard, F. Detcheverry and S. Merabia*, « Enhanced heat transfer with core shell metal dielectric nanoparticles », Phys. Rev. Appl., 13 (2020), 034036

[57] A. Tlili, V. Giordano, Y. Beltukov, P. Desmarchelier, S. Merabia, and A. Tanguy. « Enhancement and anticipation of the Ioffe−Regel crossover in amorphous/nanocrystalline composites », Nanoscale, 9 (2019) 1471


[56] T. Omori, N. Inoue, L. Joly, S. Merabia and Y. Yamaguchi, « Full characterization of the hydrodynamic boundary condition at the atomic scale using an oscillating channel: Identification of the viscoelastic interfacial friction and the hydrodynamic boundary position », Phys. Rev. Fluids, 4 (2019), 10.1103


[55] L. Fu, L. Joly, and S. Merabia*, « Giant Thermoelectric Response of Nanofluidic Systems Driven by Water Excess Enthalpy », Phys Rev Lett, 123 (2019), 10.1103

[54] H. Oga, Y. Yamaguchi, T. Omori and S. Merabia and L. Joly. « Green−Kubo measurement of

liquid−solid friction in finite−size systems », J. Chem. Phys., 151 (2019), 054502


[53] K. Ogawa, H. Oga, H. Kusudo, Y. Yamaguchi, Takeshi Omori, S. Merabia and L. Joly. Large effect of lateral box size in molecular dynamics simulations of liquid−solid friction », Phys. Rev. E, 100 (2019),



[52] Y. Wang, G. Maurel, M. Gouty, F. Detcheverry, S. Merabia*, « Implicit Medium Model for Fractal Aggregate Polymer Nanocomposites: Linear Viscoelastic Properties », Macromolecules, 52 (2019) 2021


[51] A. Rajabpour, R. Seif, S. Arabha, M. M. Heyhat, S. Merabia, and A. Hassanali., « Thermal transport at a nanoparticle−water interface: A molecular dynamics and continuum modeling study », J. Chem. Phys., 150 (2019) 114701


[50] M. Isaiev, S. Burian, L. Bulavin, W. Chaze, M. Gradeck, G. Castagnet, S. Merabia, P. Keblinski, K. Termentzidis, « Applicability of the Young-Laplace equation for nanodroplets in an external field », The Journal of Physical Chemistry B 122 (12), 3176-3183


[49] L. Fu, S. Merabia, and L. Joly, « Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes : thermodynamics meets hydrodynamics». J. Phys. Chem. Lett., 9 (2018) 2086


[48] L. Fu, S. Merabia and L. Joly, “What controls thermo-osmosis ? Molecular simulations show the critical role of interfacial hydrodynamics”, Phys. Rev. Lett., 119 (2017), 214501


[47] A. Alkurdi, S. Pailhès and S. Merabia*, «Critical angle for phonon scattering : results from ab initio lattice dynamics calculations », App. Phys. Lett. 111 (2017) 093101


[46] J. Lombard, T. Biben and S. Merabia*, « Threshold for nanobubble generation around laser heated plasmonic nanoparticles », J. Phys. Chem. C, 121 (28), 15402 (2017)


[45] H Han, S Merabia, F Müller-Plathe, « Thermal Transport at Solid-Liquid Interfaces : high pressure facilitates heat flow through nonlocal liquid structuring »,   J. Phys. Chem. Lett. 8 , 1946 (2017)

[44] H Han, S Merabia*, F Müller-Plathe*, « Thermal transport at a solid-nanofluid interface : from the increase of thermal resistance towards a shift of rapid boiling », Nanoscale, 9 8314 (2017)

* equal contribution


[43] E. Guillaud, L. Joly, D. Deligny and S. Merabia*, « Assesment of the elastic models in model supercooled water », J. Chem. Phys. 147, 014504 (2017)


[42] A. Alkurdi et S. Merabia*, « Thermal transmission at Si/Ge interfaces from ab-initio lattice dynamics calculations«, J. Phys. Cond. Mat., 785, 012001 (2017) 


[41] E. Guillaud, S. Merabia, D. De Ligny and L. Joly, « Viscosity of supercooled water from molecular simulations unsing the TIP4P2005f force field », Phys. Chem. Chem. Phys. 19, 2124 (2017)


[40] S. Merabia* et F. Detcheverry, « Thermally activated creep and fluidization in flowing disordered matter », EPL 116 (2016) 46003


[39] J. Lombard, T Biben, S Merabia*, « Ballistic heat transport in laser generated nano-bubbles »

Nanoscale 8 (2016), 14870-14876


[38] L. Joly, G. Tocci, S. Merabia and A. Michealides,

"Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding, J. Phys. Chem. Lett. 7 (2016), 1381-1386


[37] J. Lam, J. Lombard, C. Dujardin, G. Ledoux, S. Merabia and D. Amans, « Dynamical study of bubble expansion following laser ablation in liquid », App. Phys. Lett. 108 (2016), 074104


[36] S. Merabia*, J. Lombard and A. Alkurdi, « Importance of viscoelastic effects and bonding strength effects for the thermal transport at solid-liquid interfaces », Int. Jour. Heat and Mass Transf. (2016) 100, 287-294


[35] E. Blandre, L. Chaput, S. Merabia, D. Lacroix and K. Termentzidis, « On the reduction of the thermal conductivity in core/shell and diameter modulated silicon nanowires  », Phys. Rev. B 91 (2015) 115404


[34] J. Lombard, T. Biben et S. Merabia*, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis”, Phys. Rev. E 91 (2015) 043007


[33] J. Lombard, F. Detcheverry and S. Merabia*, “Influence of electron-phonon interfacial conductance on the thermal transport at metal/dielectric interface”, J. Phys. Cond. Mat. 27 (2015) 015007


[32] S. Merabia* and K. Termentzidis, “Thermal boundary conductance of rough interfaces probed by equilibrium molecular dynamics”, Phys. Rev. B 89 (2014) 054309


[31] J. Lombard, T. Biben et S. Merabia*, “Nanobubbles around overheated nanoparticles”, Phys. Rev. Lett. 112 (2014) 105701


[30] A. France-Lanord, S. Merabia, T. Albaret, D. Lacroix et K. Termentzidis, “Thermal properties of amorphous /crystalline silicon superlattices”, J. Phys. Cond. Mat. 26 (2014) 355801


[29] A. France-Lanord, E. Blandre, T. Albaret, S. Merabia, D. Lacroix et K. Termentzidis, “Atomistic amorphous/crystalline interfaces modelling for superlattices and core/shell nanowires”, J. Phys. Condens. Mat. (2014)


[28] A. Papon, L. Guy, K. Saalwächter, J. Oberdisse, S. Merabia, D. Long, P. Sotta, H. Montes et F. Lequeux, « Studying model samples to understand mechanical properties of filled elastomers », KJK journal, 26 (2013) 52

[27] E. Masnada, S. Merabia*, M. Couty and J.-L. Barrat*, « Entanglement induced reinforcement in polymer nanocomposites », Soft Matter, 9 (2013) 10532


[26] P. Sotta, D.R. Long, S. Merabia, L. Guy, A. Papon, H. Montés et F. Lequeux, « Modeling large amplitude oscillatory shear in filled elastomers », Constitutive Models for Rubber VII, 2013


[25] D. Del Biondo, E. Masnada, S. Merabia, M. Couty et J.L. Barrat, « Numerical study of a slip-link model for polymer melts and nanocomposites », J. Chem. Phys. 138 (2013) 194902


[24] K. Termentzidis, E. Blandre, A. France-Lannord, T. Albaret, S. Merabia and D. Lacroix,

« Thermal conductivity of regularly spaced amorphous/crystalline silicon superlattices. A molecular dynamics study », MRS proceedings 2013


[23] K. Termentzidis, T. Barreteau, Y. Yuxiang, S. Merabia, X. Zianni, Y. Chalopin, P. Chantrenne, S. Volz, « Modulated SiC nanowires : molecular dynamics study of their thermal properties », Phys. Rev. B 87 (2013) 125410

[22] S. Merabia* et K. Termentzidis, “ Thermal conductance at the interface between crystals using equilibrium and non-equilibrium molecular dynamics”, Phys. Rev. B, 86 (2012) 094303


[21] S. Merabia* et K. Termentzidis, “Kapitza thermal conductance at the interface

between Lennard-Jones crystals using non-equilibrium molecular dynamics simulations ”, J. Phys. Cond. Mat, 395 (2012) 012115


[20] A. Papon, S. Merabia* , L. Guy , F. Lequeux, H. Montes, P. Sotta et D. R. Long* , “Unique Non-linear Behavior of Nano-Filled Elastomers: From the Onset of Strain Softening to Large Amplitude Shear Deformations” , Macromolecules 45 (2012) 2891

[19] S. Merabia; Barrat Jean-Louis; Lewis Laurent J, “Heat conductionacross molecular junctions between nanoparticles”, J. Chem. Phys., 134 (2011) 234707

[18] L. Joly*, S. Merabia*, J-L. Barrat*, “Effective temperature of a heated Brownian particle”, EPL

94 (2011) 50007


[17] K. Termentzidis, S. Merabia; P. Chantrenne et P. Keblinski, « Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics », Int. J. Heat Mass Transf., 54 (2011) 2014

[16] K. Termentzidis; J. Parasuraman;C. Da Cruz; S . Merabia, D. Angelescu, F. Marty, T. Bouruina, X. Kleber, P. Chantrenne et P. Basset, « Thermal conductivity and thermal boundary resistance of nanostructures », Nano. Res. Lett., 6 (2011) 288


[15] S. Merabia*, P. Sotta et D.R. Long*, «Unique plastic and recovery behavior of nanofilled elastomers and thermoplastic elastomers (Payne and Mullins effects) », J. Polym. Sci. B, 48 (2010) 1495


[14] V. Juve, M. Scardamaglia, P. Maioli, A. Crut, S. Merabia, L. Joly, N. Del Fatti et F. Vallée, « Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles », Phys. Rev. B 80 (2009) 195406


[13] P. Keblinski, S. Merabia, J.-L. Barrat, L. Joly et M. Vladkov, « Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles », ASME 2009


[12] S. Merabia, S. Shenogin, L. Joly, P. Keblinski et J.-L. Barrat, « Heat transfer from nanoparticles : a corresponding state analysis », PNAS, 106 (2009) 15113

[11] J.-L. Barrat, S. Merabia, L. Joly et P. Keblinski, “Simulations of heat transfer around nanoparticles”, ASME 2009


[10] S. Merabia*, P. Keblinski, L. Joly, L. Lewis et J.-L. Barrat, « Critical heat flux around strongly heated nanoparticles », Phys. Rev. E 79 (2009) 021404

[9] S. Merabia*, J. Bonet Avalos, « Dewetting of a stratified two-component liquid film on a solid substrate », Phys. Rev. Lett., 101 (2008) 208304

[8] S. Merabia, P. Sotta et D.R. Long, « A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers (Payne and Mullins effects) », Macromolecules, 41 (2008) 8252

[7] S. Merabia*, J. Bonet Avalos et I. Pagonabarraga, « Modelling capillary phenomena at a mesoscale : from simple to complex fluids », J. Non-Newt. Fluid Mech. , 154 (2008) 13


[6] S. Merabia et D.R. Long, « Heterogeneous dynamics and pressure dependence of the dynamics

in van der Waals liquids », Macromolecules, 41 (2008) 3284


[5] S. Merabia* et I. Pagonabarraga, « Density dependent potentials : structure and thermodynamics », J. Chem. Phys., 127 (2007) 054903

[4] S. Merabia et D.R. Long, « Heterogeneous dynamics, ageing and rejuvenating in vand er Waals liquids », J. Chem. Phys, 125 (2006) 234901


[3] S. Merabia* et I. Pagonabarraga, « A mesoscopic model for dewetting », EPJE, 20 (2006) 209,


[2] S. Merabia, P. Sotta et D.R. Long, « Heterogeneous nature of the dynamics and glass transition in thin polymer films », EPJE 15 (2004) 189

[1] S. Merabia et D.R. Long, « Heterogeneous dynamics at the glass transition in van der Waals liquids : determination of the characteristic scale », EPJE 9 (2002) 195

bottom of page